Experimental Evidence of Specific Solute–Solvent Interactions of Fullerenes C₆₀ and C₇₀ in Solution: One-Dimensional Steady-State Intermolecular ¹³C, ¹H Overhauser Effect Study

Anastasios Troganis,* Ioannis P. Gerothanassis,†^{,1} and Demetrios K. Papademitriou‡

*NMR Center, †Department of Chemistry, Section of Organic Chemistry and Biochemistry, and ‡Department of Physics, Applied Physics Laboratory, University of Ioannina, Ioannina GR-451 10, Greece

Received February 20, 1997; revised August 28, 1997

Steady-state one-dimensional selective intermolecular carbon-13, proton-1 NOE experiments provide the first experimental evidence of specific solute–solvent interactions of fullerenes C_{60} and C_{70} in solution. $_{\odot}$ 1998 Academic Press

Key Words: steady-state; nuclear Overhauser effect; intermolecular ¹³C, ¹H NOE; fullerenes.

The recent success in generating macroscopic quantities of the C_{60} and C_{70} cluster (1-4) (Fig. 1) has stimulated intense interest and activity, and a variety of spectroscopic methods have been applied (1-3, 5, 6). In particular C₆₀ may well be the most intensely researched single molecule in modern chemistry (7). The solubility of fullerenes in various solvents (8-10) may be of importance in rationalizing their reactivity, extraction, and chromatographic separation. However, to the best of our knowledge, no report investigating specific interactions of solvents with fullerenes at a molecular level has so far been published. Heteronuclear ¹³C, ¹H Overhauser effect experiments can provide a valuable probe for investigating solute $({}^{13}C)$ -solvent $({}^{1}H)$ interactions (11-15). This Communication describes the application of a steady-state 1D selective intermolecular carbon-13, proton-1 NOE experiment and provides the first experimental evidence of specific solute-solvent interactions of fullerenes C_{60} and C_{70} in solution.

The ¹³C NMR spectrum of C_{60} in *o*-dichlorobenzene, which is one of the best solvents for C_{60} with solubilizing capacity 10–15 times higher than that of benzene (8, 9), consists of a single line at 142.98 ppm (Figs. 2A, 2B). The spectrum of C_{70} consists of four lines at 150.45, 147.91, 147.20, and 145.16 ppm (Figs. 3A, 3B). A fifth peak at ~130.6 ppm, which is strongly overlapped with the solvent resonance, was assigned by Taylor *et al.* (*16*) to the equatorial ring of 10 carbon atoms e in analogy with the tertiary carbons in pyrene. The peaks at 145.16 and 147.91 ppm

arise from carbons d and c since models indicate carbons d to be less strained than carbon atoms c. Similarly, straininduced hybridization changes have been utilized to assign the lines at 150.45 ppm and 147.20 ppm to types a and b carbon nuclei respectively (*16*). A 2D $^{13}C^{-13}C$ INADE-QUATE analysis of C₇₀ by Johnson *et al.* (*17*) has unequivocally confirmed the assignments made by Taylor *et al.* (*16*).

To build up the intermolecular heteronuclear NOE, selective low-power decoupling was applied on each pair of protons of o-dichlorobenzene followed by a high-power broadband composite decoupling during the observing pulse (^{13}C) and the acquisition of the free induction decay (18, 19). It is not trivial to define the optimum conditions of selective low-power decoupling in a multispin system in order to obtain NOE peaks of significant intensity. o-Dichlorobenzene is an AA' MM' system ($J_{AM} \sim 6$ Hz), and the separation between the two multiplets ($\sim 105 \text{ Hz}$) is significantly larger than their overall widths. The spin system, therefore, is a case of strong coupling. The assignment of the H_3/H_6 multiplet (δ \approx 7.22 ppm) and H₄/H₅ multiplet ($\delta \approx$ 6.96 ppm) was based on the well-documented deshielding inductive effect of the chlorine atoms (20). The T_1 values of the H_4/H_5 and $H_3/$ H_6 proton pairs, of the ${}^{12}C - {}^{1}H$ isotopomers, were measured by the inversion-recovery technique and were found to be 6.40 and 7.25 s respectively. The slightly faster relaxation of the H_4/H_5 protons is, very probably, due to the fact that these protons have two ortho partners, while H_3/H_6 have only one. Selective saturation of either multiplet can, therefore, be achieved by CW preirradiation of the solvent protons for 60 s with a decoupling band width $\gamma B_2 \approx 15$ Hz which shows good saturation efficiency and selectivity in measuring homonuclear NOEs. Heteronuclear NOE enhancement factors, $f_{\rm c}$, were calculated from peak-height ratios after exponential multiplication and Fourier transformation. Thus $f_{\rm c}$ $= \{ [I]_{NOE} / [I]_{B} \} - 1$, where the subscripts NOE and B refer to NOE spectrum and unperturbed spectrum, respectively.

Figure 2 shows a comparison of the ¹³C, ¹H heteronuclear NOE experiments with the conventional 1D ¹³C NMR spec-

¹ To whom correspondence should be addressed.

FIG. 1. Schematic diagram of fullerene-60 and fullerene-70 (based on the diagram in Ref. (5). The five sets of identical carbon nuclei a-e of C_{70} lie in the vertical planes as indicated.

trum of C₆₀. Solvent clustering around C₆₀ is clearly demonstrated by the significant NOE peaks between the *o*-dichlorobenzene protons and the C₆₀ carbons. The NOE peak intensity of the C₆₀ carbons with the (4,5) pair of protons of *o*dichlorobenzene, $f_c = 0.050$, is stronger than that of the (3,6) protons, $f_c = 0.035$, as is evident by the subtraction spectrum 2E. This would indicate closer orientation and, thus, stronger orthogonal $\sigma - \pi$ electronic interaction of the protons (4,5) of the solvent, which are remote to chlorine, with the π cloud of the "aromatic" C₆₀ carbons. This preferential orientation should also be expected on the basis of the solvent dipole moment and the presence of partial negative charge on the chlorine atoms.

Indirect cross-relaxation effects, however, may complicate the interpretation of NOE data since saturation of, e.g., the H_4/H_5 protons obliterates cross-correlation terms involving this pair of spins, but cross-correlation terms for the remaining spin system are not eliminated (*18*, *19*). Since heteronuclear NOE values resulting from saturation of the multiplets *A*, H_4/H_5 , and *M*, H_3/H_6 , can be quantified by

$$f_{c}'\{A\} = \frac{f_{c}\{A\} + f_{c}\{M\}f_{M}\{A\}}{1 - f_{A}\{M\}f_{M}\{A\}}$$
[1]

and

$$f'_{c}\{M\} = \frac{f_{c}\{M\} + f_{c}\{A\}f_{A}\{M\}}{1 - f_{A}\{M\}f_{M}\{A\}}, \qquad [2]$$

it is important to investigate homonuclear NOE difference spectra resulting from on/off resonance selective irradiation of the *A* and *M* proton pairs. From Figs. 4B and 4C the enhancement factors $f_M{A} = 0.076$ and $f_A{M} = 0.049$ were calculated which provide a good indication that Eqs. [1] and [2] can be approximated as

and

$$f'_{c} \{A\} = f_{c}\{A\}$$
 [3]

$$f'_{c}\{M\} = f_{c}\{M\}.$$
 [4]

The difference in T_1 values of the H_4/H_5 and H_3/H_6 proton pairs would imply that the indirectly transmitted steady-state enhancement (21, 22) at H_3/H_6 on saturating H_4/H_5 will be larger than the steady-state enhancement at H_4/H_5 on

FIG. 2. (A) Conventional ¹³C NMR spectrum of C_{60} in *o*-dichlorobenzene (90%)/ C_6D_6 (10%) (concentration 22 mM) at 298 K, 5-mm sample tube, on a Brüker AMX 400-MHz instrument. Spectral acquisition parameters: 26 s acquisition time, 2.5 kHz spectral width, 74 s relaxation delay time, 120 scans. (B) Expanded region of the C_{60} carbons. (C) One-dimensional ¹³C–¹H NOE difference experiment, 120 scans, 60 s selective lowpower decoupling on the (4,5) pair of protons of o-dichlorobenzene, 14 s relaxation delay time. (D) As in (B) but with 60 s selective low-power decoupling on the (3,6) pair of protons. (E) The difference spectrum (C) – (D). The asterisk denotes a folded solvent resonance.

saturating H_3/H_6 which in turn would imply a larger (negative) indirect contribution to the intermolecular ¹³C { ¹H } NOE to the fullerene in the former case. This factor would reduce the difference between the enhancements seen on irradiating the H_4/H_5 proton pair and the H_3/H_6 proton pair, but not significantly.

The NOE peak intensities of the C₇₀ carbons with the two pairs of protons of 1,2-dichlorobenzene indicate significant differences (Fig. 3). As is evident from the subtraction spectrum 3E, the (4,5) protons are closer and, thus, exhibit stronger orthogonal $\sigma - \pi$ electronic interactions with the π cloud of the C₇₀ carbon atoms. This is in excellent agreement with the NOE data of the C₆₀ fullerene. The ¹³C spin–lattice

FIG. 3. (A) Conventional ¹³C NMR spectrum of C_{70} in o-dichlorobenzene (90%)/C₆D₆ (10%) (concentration 21 mM) at 298 K, 5-mm sample tube, on a Brüker AMX 400-MHz instrument. Spectral acquisition parameters: 26 s acquisition time, 2.5 kHz spectral width, 74 s relaxation delay time, 1200 scans. (B) Expanded region of the a, b, c, and d carbons of C_{70} . (C) One-dimensional ¹³C–¹H NOE difference experiment, 1200 scans, 60 s selective low-power decoupling on the (4,5) pair of protons of odichlorobenzene, 14 s relaxation delay time. (D) As in (B) but with 60 s selective low-power decoupling on the (3,6) pair of protons. (E) The difference spectrum (C) – (D).

FIG. 4. (A) Conventional ¹H NMR spectrum of the solution of Fig. 2A, at 298 K, on a Brüker AMX 400-MHz instrument. Spectral acquisition parameters: 17 s acquisition time, 240 Hz spectral width, 60 s relaxation delay time, 16 scans. (B) NOE difference spectrum resulting from selective CW preirradiation of the H₃/H₆ proton pair for 60 s with a decoupling band width $\gamma B_2 \approx 15$ Hz, 48 scans. (C) NOE difference spectrum resulting for solution selective CW preirradiation of the H₄/H₅ proton pair for 60 s with a decoupling band width $\gamma B_2 \approx 15$ Hz, 48 scans.

relaxation times of the C₇₀ carbons are very similar (a, 30.6 s; b, 34.0 s; c, 33.4 s; and d, 31.2 s); therefore, they do not affect the specificity of the interactions. Further investigation, however, is needed to quantify NOE differences of the C₇₀ carbons, particularly with respect to the π electron distribution, and thus aromaticity, for the different a–e sites in C₇₀. Minimal basis *ab initio* calculations (23) on C₇₀ predict greatest diamagnetic shielding at the equator and least near the poles of this spheroidal cluster; however, the

absolute magnitudes of the total shieldings were found to be in very poor agreement with the experimental data.

In conclusion, the present findings are a demonstration of the utility of ¹³C, ¹H NOE experiments as an effective probe for investigating interactions between fullerenes and solvents at a molecular level. Extension of these studies may be of importance in rationalizing the reactivity of fullerenes in different solvent media.

ACKNOWLEDGMENTS

Financial support from the Research Committee of the University of Ioannina is gratefully acknowledged. Instrumentation used in these studies was funded, in part, by EEC Equipment Grant Stride-Hellas-33. We appreciated useful comments and suggestions from the referees.

REFERENCES

- H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, *Nature* **318**, 162 (1985).
- W. Krätschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, Nature 347, 354 (1990).
- 3. W. Krätschmer, K. Fostiropoulos, and D. R. Huffman, *Chem. Phys. Lett.* **170**, 167 (1990).
- 4. G. Meijer and D. S. Bethune, J. Chem. Phys. 93, 7800 (1990).
- 5. H. W. Kroto, A. W. Alaf, and S. P. Balm, *Chem. Rev.* **91**, 1213 (1991).
- 6. M. S. Dresselhaus, G. Dresselhaus and P. C. Exlund, "Science of

Fullerenes and Carbon Nanotubes," Academic Press, San Diego (1996).

- 7. D. E. H. Jones, Nature 38, 384 (1996).
- R. S. Ruoff, D. S. Tse, R. Malhotra, and D. C. Lorents, J. Phys. Chem. 97, 3379 (1993).
- 9. P. Ruelle, A. Farina-Cuendet, and U. W. Kesselring, J. Chem. Soc. Chem. Commun. 1161 (1995).
- P. Ruelle, A. Farina-Cuendet, and U. W. Kesselring, J. Am. Chem. Soc. 118, 1777 (1996).
- 11. P. L. Rinaldi, J. Am. Chem. Soc. 105, 5167 (1983).
- 12. C. Yu and G. C. Levy, J. Am. Chem. Soc. 105, 6994 (1983).
- 13. H. B. Seba and B. Ancian, J. Magn. Reson. 84, 177 (1989).
- 14. H. B. Seba and B. Ancian, J. Chem. Soc. Chem. Commun. 996 (1990).
- I. P. Gerothanassis, A. Troganis, and C. Vakka, *Tetr. Lett.* 37, 6569 (1996).
- R. Taylor, J. P. Hare, A. K. Abdul, Sada and H. W. Kroto, J. Chem. Soc. Chem. Commun. 1423 (1990).
- R. D. Johnson, G. Meijer, J. R. Salem, and D. S. Bethune, J. Am. Chem. Soc. 113, 3619 (1991).
- 18. K. E. Kövér and G. Batta, Prog. NMR. Spectrosc. 19, 223 (1987).
- D. Neuhaus and M. P. Williamson, "The Nuclear Overhauser Effect in Structural and Conformational Analysis," VCH, Cambridge (1989).
- R. K. Harris, "Nuclear Magnetic Resonance Spectroscopy," Pitman, London (1983).
- 21. J. H. Noggle, J. Magn. Reson. 35, 95 (1979).
- 22. K. E. Kövér and G. Batta, J. Am. Chem. Soc. 107, 5829 (1985).
- 23. P. W. Powler, P. Lazzeretti, M. Malagoli, and R. Zanasi, *Chem. Phys. Lett.* **179**, 174 (1991).